lenspack.starlet_l1norm module

STARLET L1-NORM MODULE

This module contains functions for computing the starlet l1norm as defined in Eq. (1) of https://arxiv.org/pdf/2101.01542.pdf.

lenspack.starlet_l1norm.noise_coeff(image, nscales)[source]
Compute the noise coefficients \(\sigma^{e}_{j}\)

to get the estimate of the noise at the scale j following Starck and Murtagh (1998).

Parameters
  • image (array_like) – Two-dimensional input image.

  • nscales (int) – Number of wavelet scales to compute. Should not exceed log2(N), where N is the smaller of the two input dimensions.

Returns

coeff_j – Values of the standard deviation of the noise at scale j

Return type

numpy.ndarray

lenspack.starlet_l1norm.get_l1norm_noisy(image, noise, nscales, nbins)[source]
Compute the starlet \(\ell_1\)-norm of a noisy image

following Eq. (1) of https://arxiv.org/abs/2101.01542.

Parameters
  • image (array_like) – Two-dimensional input noiseless image.

  • noise (array_like) – Two-dimensional input of the noise to be added to image

  • nscales (int) – Number of wavelet scales to compute. Should not exceed log2(N), where N is the smaller of the two input dimensions.

  • nbins (int) – Number of bins in S/N desired for the summary statistic

Returns

  • bins_snr, starlet_l1norm (tuple of 1D numpy arrays)

  • Bin centers in S/N and Starlet \(\ell_1\)-norm of the noisy image