lenspack.starlet_l1norm module¶
STARLET L1-NORM MODULE
This module contains functions for computing the starlet l1norm as defined in Eq. (1) of https://arxiv.org/pdf/2101.01542.pdf.
- lenspack.starlet_l1norm.noise_coeff(image, nscales)[source]¶
- Compute the noise coefficients \(\sigma^{e}_{j}\)
to get the estimate of the noise at the scale j following Starck and Murtagh (1998).
- Parameters
image (array_like) – Two-dimensional input image.
nscales (int) – Number of wavelet scales to compute. Should not exceed log2(N), where N is the smaller of the two input dimensions.
- Returns
coeff_j – Values of the standard deviation of the noise at scale j
- Return type
numpy.ndarray
- lenspack.starlet_l1norm.get_l1norm_noisy(image, noise, nscales, nbins)[source]¶
- Compute the starlet \(\ell_1\)-norm of a noisy image
following Eq. (1) of https://arxiv.org/abs/2101.01542.
- Parameters
image (array_like) – Two-dimensional input noiseless image.
noise (array_like) – Two-dimensional input of the noise to be added to image
nscales (int) – Number of wavelet scales to compute. Should not exceed log2(N), where N is the smaller of the two input dimensions.
nbins (int) – Number of bins in S/N desired for the summary statistic
- Returns
bins_snr, starlet_l1norm (tuple of 1D numpy arrays)
Bin centers in S/N and Starlet \(\ell_1\)-norm of the noisy image