lenspack.theory.distributions module¶
- class lenspack.theory.distributions.zdist(alpha, beta, z0, zmax=None)[source]¶
Bases:
object
Parameterized redshift probability distribution.
Continuous model of a redshift probability distribution.
The parameterized distribution is given by
n(z) = A * [(z / z0)^alpha] * exp[-(z / z0)^beta],
where A is the normalization factor.
- Parameters
alpha (float) – Parameters of the distribution.
beta (float) – Parameters of the distribution.
z0 (float) – Parameters of the distribution.
zmax (float, optional) – Maximum redshift of the distribution. If given, the function returns zero for redshifts larger than zmax, and the normalization is computed by numerical integration. If None, np.inf is used, and the normalization is given by the gamma function. Default is None.
Notes
A good fit to the MICE simulated galaxy catalog are the parameters (alpha, beta, z0) = (0.88, 1.4, 0.78).
Examples
>>> nz = zdist(0.88, 1.4, 0.78) >>> nz.A 2.0124103366443378 >>> nz.pdf([-0.5, 0, 0.5, 1.0, 1.5]) array([0. , 0. , 0.79567909, 0.60772375, 0.29427866])
>>> nz = zdist(0.88, 1.4, 0.78, zmax=1.4) >>> nz.A 2.4324379840968535 >>> nz.pdf([-0.5, 0, 0.5, 1.0, 1.5]) array([0. , 0. , 0.96175219, 0.73456706, 0. ])
- pdf(z)[source]¶
Compute the probability density at a given redshift.
- Parameters
z (array_like) – Redshift values.
- Returns
Probability density at each z.
- Return type
float or numpy array