wf_psf.psf_models.psf_model_parametric module
PSF Model Parametric.
A module which defines the classes and methods to manage the parameters of the psf parametric model.
- Authors:
Tobias Liaudat <tobiasliaudat@gmail.com> and Jennifer Pollack <jennifer.pollack@cea.fr>
- class wf_psf.psf_models.psf_model_parametric.TF_PSF_field_model(*args, **kwargs)[source]
Bases:
ModelParametric PSF field model!
Fully parametric model based on the Zernike polynomial basis.
- Parameters:
ids (tuple) – A tuple storing the string attribute of the PSF model class
zernike_maps (Tensor(n_batch, opd_dim, opd_dim)) – Zernike polynomial maps.
obscurations (Tensor(opd_dim, opd_dim)) – Predefined obscurations of the phase.
batch_size (int) – Batch size.
output_Q (float) – Oversampling used. This should match the oversampling Q used to generate the diffraction zero padding that is found in the input packed_SEDs. We call this other Q the input_Q. In that case, we replicate the original sampling of the model used to calculate the input packed_SEDs. The final oversampling of the generated PSFs with respect to the original instrument sampling depend on the division input_Q/output_Q. It is not recommended to use output_Q < 1. Although it works with float values it is better to use integer values.
l2_param (float) – Parameter going with the l2 loss on the opd. If it is 0. the loss is not added. Default is 0..
output_dim (int) – Output dimension of the PSF stamps.
n_zernikes (int) – Order of the Zernike polynomial for the parametric model.
d_max (int) – Maximum degree of the polynomial for the Zernike coefficient variations.
x_lims ([float, float]) – Limits for the x coordinate of the PSF field.
y_lims ([float, float]) – Limits for the x coordinate of the PSF field.
coeff_mat (Tensor or None) – Initialization of the coefficient matrix defining the parametric psf field model.
- Attributes:
activity_regularizerOptional regularizer function for the output of this layer.
compute_dtypeThe dtype of the layer’s computations.
distribute_strategyThe tf.distribute.Strategy this model was created under.
dtypeThe dtype of the layer weights.
dtype_policyThe dtype policy associated with this layer.
dynamicWhether the layer is dynamic (eager-only); set in the constructor.
inbound_nodesReturn Functional API nodes upstream of this layer.
inputRetrieves the input tensor(s) of a layer.
input_maskRetrieves the input mask tensor(s) of a layer.
input_shapeRetrieves the input shape(s) of a layer.
input_specInputSpec instance(s) describing the input format for this layer.
- layers
lossesList of losses added using the add_loss() API.
metricsReturns the model’s metrics added using compile(), add_metric() APIs.
metrics_namesReturns the model’s display labels for all outputs.
nameName of the layer (string), set in the constructor.
name_scopeReturns a tf.name_scope instance for this class.
non_trainable_variablesSequence of non-trainable variables owned by this module and its submodules.
non_trainable_weightsList of all non-trainable weights tracked by this layer.
outbound_nodesReturn Functional API nodes downstream of this layer.
outputRetrieves the output tensor(s) of a layer.
output_maskRetrieves the output mask tensor(s) of a layer.
output_shapeRetrieves the output shape(s) of a layer.
run_eagerlySettable attribute indicating whether the model should run eagerly.
state_updatesDeprecated, do NOT use!
- stateful
submodulesSequence of all sub-modules.
supports_maskingWhether this layer supports computing a mask using compute_mask.
- trainable
trainable_variablesSequence of trainable variables owned by this module and its submodules.
trainable_weightsList of all trainable weights tracked by this layer.
- updates
variable_dtypeAlias of Layer.dtype, the dtype of the weights.
variablesReturns the list of all layer variables/weights.
weightsReturns the list of all layer variables/weights.
Methods
add_loss(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric(value[, name])Adds metric tensor to the layer.
add_update(updates)Add update op(s), potentially dependent on layer inputs.
add_variable(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight([name, shape, dtype, ...])Adds a new variable to the layer.
assign_coeff_matrix(coeff_mat)Assign coefficient matrix.
build(input_shape)Builds the model based on input shapes received.
call(inputs)Define the PSF field forward model.
compile([optimizer, loss, metrics, ...])Configures the model for training.
compute_loss([x, y, y_pred, sample_weight])Compute the total loss, validate it, and return it.
compute_mask(inputs[, mask])Computes an output mask tensor.
compute_metrics(x, y, y_pred, sample_weight)Update metric states and collect all metrics to be returned.
compute_output_shape(input_shape)Computes the output shape of the layer.
compute_output_signature(input_signature)Compute the output tensor signature of the layer based on the inputs.
count_params()Count the total number of scalars composing the weights.
evaluate([x, y, batch_size, verbose, ...])Returns the loss value & metrics values for the model in test mode.
evaluate_generator(generator[, steps, ...])Evaluates the model on a data generator.
finalize_state()Finalizes the layers state after updating layer weights.
fit([x, y, batch_size, epochs, verbose, ...])Trains the model for a fixed number of epochs (iterations on a dataset).
fit_generator(generator[, steps_per_epoch, ...])Fits the model on data yielded batch-by-batch by a Python generator.
from_config(config[, custom_objects])Creates a layer from its config.
Get coefficient matrix.
get_config()Returns the config of the Model.
get_input_at(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at(node_index)Retrieves the input shape(s) of a layer at a given node.
get_layer([name, index])Retrieves a layer based on either its name (unique) or index.
get_output_at(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at(node_index)Retrieves the output shape(s) of a layer at a given node.
get_weights()Retrieves the weights of the model.
load_weights(filepath[, by_name, ...])Loads all layer weights, either from a TensorFlow or an HDF5 weight file.
make_predict_function([force])Creates a function that executes one step of inference.
make_test_function([force])Creates a function that executes one step of evaluation.
make_train_function([force])Creates a function that executes one step of training.
predict(x[, batch_size, verbose, steps, ...])Generates output predictions for the input samples.
predict_generator(generator[, steps, ...])Generates predictions for the input samples from a data generator.
predict_mono_psfs(input_positions, ...)Predict a set of monochromatic PSF at desired positions.
predict_on_batch(x)Returns predictions for a single batch of samples.
predict_opd(input_positions)Predict the OPD at some positions.
predict_step(data)The logic for one inference step.
reset_metrics()Resets the state of all the metrics in the model.
save(filepath[, overwrite, ...])Saves the model to Tensorflow SavedModel or a single HDF5 file.
save_spec([dynamic_batch])Returns the tf.TensorSpec of call inputs as a tuple (args, kwargs).
save_weights(filepath[, overwrite, ...])Saves all layer weights.
set_output_Q(output_Q[, output_dim])Set the value of the output_Q parameter.
set_weights(weights)Sets the weights of the layer, from NumPy arrays.
summary([line_length, positions, print_fn, ...])Prints a string summary of the network.
test_on_batch(x[, y, sample_weight, ...])Test the model on a single batch of samples.
test_step(data)The logic for one evaluation step.
to_json(**kwargs)Returns a JSON string containing the network configuration.
to_yaml(**kwargs)Returns a yaml string containing the network configuration.
train_on_batch(x[, y, sample_weight, ...])Runs a single gradient update on a single batch of data.
train_step(data)The logic for one training step.
with_name_scope(method)Decorator to automatically enter the module name scope.
__call__
reset_states
- call(inputs)[source]
Define the PSF field forward model.
[1] From positions to Zernike coefficients [2] From Zernike coefficients to OPD maps [3] From OPD maps and SED info to polychromatic PSFs
OPD: Optical Path Differences
- ids = ('parametric',)
- predict_mono_psfs(input_positions, lambda_obs, phase_N)[source]
Predict a set of monochromatic PSF at desired positions.
input_positions: Tensor(batch_dim x 2)
- lambda_obs: float
Observed wavelength in um.
- phase_N: int
Required wavefront dimension. Should be calculated with as:
simPSF_np = wf.SimPSFToolkit(...)phase_N = simPSF_np.feasible_N(lambda_obs)