shapepipe.modules.mccd_package.mccd_plot_utilities
shapepipe.modules.mccd_package.mccd_plot_utilities¶
MCCD PLOTS UTILITIES.
This module is used to generate a series of plots from the merged validation catalogues. It plots the Mean shape plots for the merged validation catalogue. It can also plot the rho statistics provided that the required packages are installed.
- Author
Tobias Liaudat
- mean_shapes_plot(ccd_maps, filename, title='', colorbar_ampl=1.0, wind=None, cmap='bwr')[source]¶
Mean Shapes Plot.
Plot mean shapes from CCD maps.
- Parameters
ccd_maps (numpy.ndarray) – CCD maps
filename (str) – File name
title (str, optional) – Plot title
colorbar_ampl (float, optional) – Colour bar amplitude; default is
1.0
wind (numpy.ndarray, optional) – minimum and maximum values for color map; determined from
ccd_maps
ifNone
(default)cmap (str, optional) – Colour map; default is
bwr
- plot_meanshapes(starcat_path, output_path, nb_pixel, w_log, hdu_no=2, remove_outliers=False, plot_meanshapes=True, plot_histograms=True, psf_model_type='mccd')[source]¶
Plot Mean Shapes.
Plot mean shapes, sizes, and histograms
- Parameters
starcat_path (str) – Input star and PSF catalogue
output_path (str) – Output directory for plots
nb_pixel (numpy.ndarray) – Number of pixels per CCD in x- and y-direction
w_log (logging.Logger) – Logging instance
hdu_no (int, optional) – HDU number of data in input FITS file; default is
2
remove_outliers (bool, optional) – Perform outlier rejection if
True
; default isFalse
plot_meanshape (bool, optional) – Plot mean focal plane ellipticities, sizes, and residuals if
True
; default isTrue
plot_histograms (bool, optional) – Plot 1D histogram of ellipticities, sizes, and residuals if
True
; default isTrue
psf_model_type (str, optional) – PSF model type, options are
mccd
orpsfex
; defualt ismccd
- neg_dash(x_in, y_in, yerr_in, plot_name='', vertical_lines=True, xlabel='', ylabel='', rho_nb='', ylim=None, semilogx=False, semilogy=False, **kwargs)[source]¶
Neg Dash.
This function is for making plots with vertical errorbars, where negative values are shown in absolute value as dashed lines. The resulting plot can either be saved by specifying a file name as
plot_name
, or be kept as a pyplot instance (for instance to combine several neg dashes).- Parameters
x_in (numpy.ndarray) – X-axis inputs
y_in (numpy.ndarray) – Y-axis inputs
yerr_in (numpy.ndarray) – Y-axis error inputs
plot_name (str, optional) – Plot name
vertical_lines (bool, optional) – Option to plot vertical lines; default is
True
xlabel (str, optional) – X-axis label
ylabel (str, optional) – Y-axis label
rho_nb (str, optional) – Rho number
ylim (float, optional) – Y-axis limit
semilogx (bool) – Option to plot the x-axis in log scale; default is
False
semilogy (bool) – Option to plot the y-axis in log scale; default is
False
- class new_BaseCorrelationFunctionSysTest[source]¶
Bases:
stile.sys_tests.BaseCorrelationFunctionSysTest
Base Function for the Correlation.
Based on style package class.
- make_catalogue(data, config=None, use_as_k=None, use_chip_coords=False)[source]¶
Make Catalogue.
- Parameters
data (numpy.ndarray) – Input data
config (dict) – The config parameter to be passed to TreeCorr’s catalogue, a configuration dict which defines attributes about how to read the file. Any optional keyword arguments may be given here in the config dict if desired; invalid keys in the config dict are ignored; See the TreeCorr package documentation for more details; default is
None
use_as_k (str, optional) – String representing the field in
data
that will be used to replace the convergence, kappa, that is identified with the stringk
; see the TreeCorr package documentation for more detailsuse_chip_coords (bool, optional) – Option to use chip coordinates; default is
False
- Returns
An instance of the
treecorr.Catalog
class; contains a data catalogue that will be correlated- Return type
treecorr.Catalog
- class Rho1SysTest[source]¶
Bases:
shapepipe.modules.mccd_package.mccd_plot_utilities.new_BaseCorrelationFunctionSysTest
Rho1 System Test.
Compute the auto-correlation of residual star shapes (star shapes - psf shapes).
- short_name = 'rho1'¶
- long_name = 'Rho1 statistics (Auto-correlation of star-PSF shapes)'¶
- objects_list = ['star PSF']¶
- required_quantities = [('ra', 'dec', 'g1', 'g2', 'psf_g1', 'psf_g2', 'w')]¶
- __call__(data, data2=None, random=None, random2=None, config=None, **kwargs)[source]¶
Call Method.
- Parameters
data (numpy.ndarray) – Input data
data2 (numpy.ndarray, optional) – Second input data
random (numpy.ndarray, optional) – Random data
random2 (numpy.ndarray, optional) – Second random data
config (dict, optional) – Configuration dict to be passed to TreeCorr; default is
None
- Returns
A numpy array of the TreeCorr outputs, handled via the Stile package through the
BaseCorrelationFunctionSysTest
class- Return type
- class DESRho2SysTest[source]¶
Bases:
shapepipe.modules.mccd_package.mccd_plot_utilities.new_BaseCorrelationFunctionSysTest
DES Rho 2 System Test.
Compute the correlation of PSF shapes with residual star shapes (star shapes - psf shapes).
- short_name = 'rho2des'¶
- long_name = 'Rho2 statistics (as defined in DES shape catalogue papers)'¶
- objects_list = ['star PSF']¶
- required_quantities = [('ra', 'dec', 'g1', 'g2', 'psf_g1', 'psf_g2', 'w')]¶
- __call__(data, data2=None, random=None, random2=None, config=None, **kwargs)[source]¶
Call Method.
- Parameters
data (numpy.ndarray) – Input data
data2 (numpy.ndarray, optional) – Second input data
random (numpy.ndarray, optional) – Random data
random2 (numpy.ndarray, optional) – Second random data
config (dict, optional) – Configuration dict to be passed to TreeCorr; default is
None
- Returns
A numpy array of the TreeCorr outputs, handled via the Stile package through the
BaseCorrelationFunctionSysTest
class- Return type
- class DESRho3SysTest[source]¶
Bases:
shapepipe.modules.mccd_package.mccd_plot_utilities.new_BaseCorrelationFunctionSysTest
DES Rho 3 System Test.
Compute the correlation of star shapes weighted by the residual size.
- short_name = 'rho3'¶
- long_name = 'Rho3 statistics (Auto-correlation of star shapes weighted by the residual size)'¶
- objects_list = ['star PSF']¶
- required_quantities = [('ra', 'dec', 'sigma', 'g1', 'g2', 'psf_sigma', 'w')]¶
- __call__(data, data2=None, random=None, random2=None, config=None, **kwargs)[source]¶
Call Method.
- Parameters
data (numpy.ndarray) – Input data
data2 (numpy.ndarray, optional) – Second input data
random (numpy.ndarray, optional) – Random data
random2 (numpy.ndarray, optional) – Second random data
config (dict, optional) – Configuration dict to be passed to TreeCorr; default is
None
- Returns
A numpy array of the TreeCorr outputs, handled via the Stile package through the
BaseCorrelationFunctionSysTest
class- Return type
- class DESRho4SysTest[source]¶
Bases:
shapepipe.modules.mccd_package.mccd_plot_utilities.new_BaseCorrelationFunctionSysTest
DES Rho 4 System Test.
Compute the correlation of star shapes weighted by the residual size.
- short_name = 'rho4'¶
- long_name = 'Rho4 statistics (Correlation of residual star shapes weighted by residual size)'¶
- objects_list = ['star PSF']¶
- required_quantities = [('ra', 'dec', 'g1', 'g2', 'sigma', 'psf_g1', 'psf_g2', 'psf_sigma', 'w')]¶
- __call__(data, data2=None, random=None, random2=None, config=None, **kwargs)[source]¶
Call Method.
- Parameters
data (numpy.ndarray) – Input data
data2 (numpy.ndarray, optional) – Second input data
random (numpy.ndarray, optional) – Random data
random2 (numpy.ndarray, optional) – Second random data
config (dict, optional) – Configuration dict to be passed to TreeCorr; default is
None
- Returns
A numpy array of the TreeCorr outputs, handled via the Stile package through the
BaseCorrelationFunctionSysTest
class- Return type
- class DESRho5SysTest[source]¶
Bases:
shapepipe.modules.mccd_package.mccd_plot_utilities.new_BaseCorrelationFunctionSysTest
DES Rho 5 System Test.
The correlation of star shapes weighted by the residual size.
- short_name = 'rho5'¶
- long_name = 'Rho5 statistics (Correlation of star and PSF shapes weighted by residual size)'¶
- objects_list = ['star PSF']¶
- required_quantities = [('ra', 'dec', 'sigma', 'g1', 'g2', 'psf_sigma', 'w')]¶
- __call__(data, data2=None, random=None, random2=None, config=None, **kwargs)[source]¶
Call Method.
- Parameters
data (numpy.ndarray) – Input data
data2 (numpy.ndarray, optional) – Second input data
random (numpy.ndarray, optional) – Random data
random2 (numpy.ndarray, optional) – Second random data
config (dict, optional) – Configuration dict to be passed to TreeCorr; default is
None
- Returns
A numpy array of the TreeCorr outputs, handled via the Stile package through the
BaseCorrelationFunctionSysTest
class- Return type
- rho_stats(starcat_path, output_path, rho_def='HSC', hdu_no=2, ylim_l=None, ylim_r=None, print_fun=<function <lambda>>)[source]¶
Rho Statistics.
Compute and plot the five rho statistics.
- Parameters
starcat_path (str) – Star catalogue file path
output_path (str) – Output directory for plots
hdu_no (int, optional) – Input HDU; default is
2
ylim_l (numpy.ndarray) – Y-axis limits for left-hand plot
ylim-r (numpy.ndarray) – Y-axis limits for right-hand plot
print_fun (callable, optional) – Output message function; default is
print